
THINKDATA INC.
Clarion Third Party Add-Ons

xmlFUSE User Guide

© 2004 ThinkData Inc. All Rights Reserved

C L A R I O N T H I R D P A R T Y A D D - O N S

xmlFUSE 2.1 User Guide

Copyright © 2004 ThinkData Inc.
2508 Pacific Avenue • Suite 1

Venice Beach, California 90291
Phone 310.823.2571

Fax 310.943.1858
info@thinkdata.com

Trademark Acknowledgements:
SoftVelocity® is a registered trademark of SoftVelocity Incorporated.
Clarion 5.5™ and Clarion 6™ are trademarks of SoftVelocity Incorporated.
Microsoft, MS, Microsoft Outlook, Visual Basic, Visual C++, Win32, Windows, Windows 2000, and Windows XP are registered
trademarks of Microsoft Corporation.
All other products and company names are trademarks of their respective owners.

© 2004 ThinkData Inc. All Rights Reserved

mailto:info@thinkdata.com

Table of Contents
Introduction 1

Prerequisites 3

Installation 4

Plugware COM Overview 5

String Classes 6

Helper Classes 7

Early Binding Automation 10

Late Binding Automation 12

Multi-DLL Considerations 15

xmlFUSE Overview 16

List of Interfaces 17

xmlFUSE Procedures 20

Example Application 27

Links 36

Summary 38

© 2004 ThinkData Inc. All Rights Reserved

X M L F U S E G U I D E

Introduction
Overview

T he xmlFUSE product provides a native COM (Component Object Model)
automation interface to the Microsoft XML (Extensible Markup Language)
4.0 SDK and the Microsoft SOAP (Simple Object Access Protocol) 3.0 SDK
using Clarion 5.5 and Clarion 6. It relies on the Plugware COM classes which

encapsulate the major portions of the COM Application Programming Interface (API)
specification as designed by Microsoft. The Plugware COM classes usher in a new era
of stability and performance when writing COM automation interfaces in Clarion. Full
source code to these classes has been provided along with detailed examples
demonstrating how to use the xmlFUSE product. This gives the developer/end-user
an opportunity to understand the underlying principles of COM while providing an
open and stable platform from which to develop additional automation interfaces.

What is XML?

XML is shorthand for Extensible Markup Language, a specification developed by the
World Wide Web Consortium (W3C). It allows designers to create their own
customized tags which enable the definition, transmission, validation, and
interpretation of data between applications and between organizations. If you are new
to XML and would like to view a short tutorial and sample documents please visit
http://www.w3schools.com/xml/.

What is SOAP?

SOAP, or Simple Object Access Protocol, provides a way for applications to
communicate with each other over the Internet independent of platform. SOAP is
based on XML and relies on HTTP (HyperText Transfer Protocol) to communicate
over the web. HTTP is supported by all Internet browsers and servers; therefore the
SOAP communication is safe from firewall interruption. In short, SOAP provides a
way to communicate between applications running on different operating systems,
using different technologies and programming languages. If you are new to SOAP and
would like to view a short tutorial, please visit http://www.w3schools.com/soap/.

1

http://www.w3schools.com/xml/
http://www.w3schools.com/soap/

X M L F U S E G U I D E

What are Web Services?

Web services are applications whose logic and functions are accessible using standard
Internet protocols and data formats such as Extensible Markup Language (XML) over
Hypertext Transfer Protocol (HTTP), and SOAP (Simple Object Access Protocol).
Like component-based development, Web services represent black-box functionality
that can be reused without worrying about how the service is implemented.
A Web service interface is defined strictly in terms of the messages that the service
accepts and generates. Applications using a Web Service can be implemented on any
platform in any programming language, as long as they can create and consume
messages defined for the service interface. A Web service can also aggregate other
services to provide a higher-level set of features.

Why developers should be interested in Web services?

• Interoperability - Any Web service can interact with any other Web service and
can be written in any language.

• Ubiquity - Web services communicate using HTTP and XML. Any connected
device that supports these technologies can both host and access Web services.

• Low Barrier to Entry - The concepts behind Web services are easy to
understand, and developers can quickly create and deploy them using many
tool-kits available on the web.

• Industry Support - Major content providers and vendors are supporting the
Web services movement.

 (Source: Amazon.com Web Services API and Integration Guide)

Why Does a Developer Need xmlFUSE?

xmlFUSE provides a complete native Clarion wrapper around the MS XML 4.0 SDK.
All developers dealing with XML in Clarion can benefit from using xmlFUSE. This
one product provides the facility for creating and parsing XML documents using
DOM (Document Object Model), SAX (Simple API for XML), XSD (XML Schema
Definition Language), and SOM (Schema Object Model). You can also use XSL
(Extensible Stylesheet Language) to format and transform your XML documents and
the MS XML HTTP library included in the MS XML 4.0 SDK will allow you to send
and retrieve documents over the Internet. xmlFUSE contains numerous examples for
using the XML and XML HTTP portions of the product.

In addition to all of the XML functionality, xmlFUSE provides a complete native
Clarion wrapper around the MS SOAP 3.0 SDK. This synergy between XML and
SOAP in the same product allows a developer to interface with XML Web Services
and process their requests and responses without purchasing additional tools. XML
Web Services are growing in popularity and sites such as XMethods

 2

X M L F U S E G U I D E

(http://www.xmethods.com) provide listings of dozens of services you can integrate
into your Clarion application. This cutting edge technology will deliver increased value
to your customers by integrating many sources of Internet application content into
your Clarion application.

Finally, the xmlFUSE product ships with complete source code to all of the class
wrappers, Plugware COM layer, and example applications. This makes xmlFUSE an
excellent learning tool for getting up to speed with XML and SOAP. XML is the
standard technology used for describing data between applications on any operating
system, using any type of database, regardless of platform or programming language. It
has been widely accepted in business applications today for linking and synchronizing
disparate data sources. SOAP is the standard technology for exchanging information
between applications over the Internet. These two technologies are very important to
all Clarion developers who want to maintain competitive advantage in the world of
Windows and web application development.

Prerequisites
This manual is targeted at intermediate Clarion 5.5 and Clarion 6 programmers with
some Win32 programming experience and a basic understanding of COM. It is not
intended to be a primer on COM – for that we recommend the following reading list.

Inside COM by Dale Rogerson.
This book discloses the secrets of COM programming for the advanced engineer. It
includes many sample programs on CD-ROM. (Microsoft Press, ISBN 1-57231-349-8)

Essential COM by Don Box
This text covers the motivation for the design of COM and its distributed aspects. It
shows how COM works and contains coverage of the core concepts of distributed COM
including detailed descriptions of COM theory and remote servers. It also offers a
thorough explanation of COM's basic vocabulary. (Addison Wesley ISBN 0-201-
63446-5)

xmlFUSE covers the MS XML 4.0 SDK and the MS SOAP 3.0 SDK. For in depth
discussion of XML, DOM, SAX, XSLT, and the MS XML 4.0 SDK we recommend
the following reading list.

XML Step by Step, Second Edition by Michael J. Young.
This book guides you through the process of creating XML documents and displaying
them on the Web. It covers XML, XSLT and the MSXML 4.0 SDK. (Microsoft Press,
ISBN 0-7356-1465-2)

The Plugware COM classes and OutlookFUSE product are written exclusively for
Clarion 5.5H and Clarion 6. Earlier versions of Clarion are not currently supported
because of improvements in the compiler to support interfaces and passing GROUP
structures by value.

 3

http://www.xmethods.com/

X M L F U S E G U I D E

Installation
To install xmlFUSE, simply execute the supplied xmlfuse.exe file and follow the
instructions in the installation program. xmlFUSE consists of Clarion source files,
templates, documentation and example applications. The default installation directory
(\C55) is located based on your Clarion 5.5 installation. If you choose \C55 as the
installation directory the installer will place files in the following order:

\C55\Libsrc – The following source files for the Plugware COM classes and the
xmlFUSE wrapper will default to this directory:

pwapi.inc
pwapifnc.inc
pwcomdef.inc
pwcom.inc
pwcom.clw
pwcom.exp
pwheap.inc
pwheap.clw
msoap.inc
msoap.clw
msoap1.inc
msoap1.clw
msoapdef.inc
msoapiid.inc
msoapint.inc
msxml2.inc
msxml2.clw
msxml21.inc
msxml21.clw
msxml2def.inc
msxml2iid.inc
msxml2int.inc

\C55\Docs\Lib – xmlFUSE library files for Win32 calls including:

ole32.lib
oleaut32.lib
olepro32.lib

\C55\Docs\xmlFUSE – xmlFUSE documentation including:

xmlFUSE.pdf

\C55\Template – xmlFUSE global extension templates including:

xmlfuse.gif
xmlfuseabc.tpl
xmlfuseleg.tpl

\C55\Examples\xmlFUSE – Source files for the example applications including:

xmlfuse.dct
xmlfuse.app
invoice.xml
invoice.xsl
readme.txt
thinkdata.ico

 4

X M L F U S E G U I D E

Plugware COM Overview
The Plugware COM classes, written by Plugware Solutions.com Ltd., provide the
Clarion developer with a set of classes to encapsulate the COM API natively in
Clarion. Now any developer can write pure Clarion source code to interface with
COM objects using native early or late binding without worrying about stability,
performance, or flexibility. So without further ado let us explore the Plugware COM
classes!

Plugware COM ships as seven Clarion source files and one export file for multi-DLL
and hand-coded applications. These files are:

pwapi.inc – Contains a large number of the Win32 API data types and constants. It is
included by the pwcomdef.inc file.

pwapifnc.inc – Contains a large number of the Win32 API function prototypes for
Clarion. It is included by the pwcomdef.inc file.

pwcomdef.inc – Contains the common interfaces (IUnknown, IDispatch,
ITypeInfo), common data types for implementing COM automation, and the function
prototypes for Win32 API calls used by the COM classes. It is included by the
pwcom.inc file.

pwcom.inc – Contains the class definitions for the early and late binding
implementations of generic COM objects including COM string classes, variant factory
object, safe array support and dispatch interface wrapper.

pwcom.clw – Contains the source implementation of the classes defined in
pwcom.inc.

pwheap.inc – Contains the class definition for the PWHeap class which is used by the
string classes to allocate memory properly. It is included by the pwcom.clw file.

pwheap.clw – Contains the source implementation of the class defined in pwheap.inc.

pwcom.exp – Contains the exports for the Plugware COM classes and methods used
in multi-DLL and hand-coded Clarion application development.

 5

X M L F U S E G U I D E

String Classes
There are four classes provided to deal with strings in COM. Figure 1.1 shows the
inheritance relationships of these classes.

PWWideStr PWBStr PWCStr

PWStr

FIGURE 1.1 The relationship between the parent PWStr class and the derived classes PWWideStr, PWBStr (BSTR or binary
string support in COM) and PWCStr

The PWStr is the parent class of the three other classes. It contains a virtual destructor
which calls the PWStr.Release method to handle freeing the memory for the string.
The PWWideStr class is used internally by the PWBStr class to allocate memory and
map a character string to a wide-character (Unicode) string. The two classes of interest
to the developer are the PWBStr and PWCStr classes.

The PWBStr class was written to support the COM BSTR data type. A BSTR is a
pointer to a wide character string and is sometimes referred to as a Basic string or
binary string. The PWBStr can take a Clarion cstring or string in its initialization
method and the PWBStr.GetStr() method will be called when the developer wishes to
pass a BSTR to a COM object.

The PWCStr class is designed to retrieve a Clarion CSTRING from a PWBStr object.
It will be used frequently to retrieve string output parameters from calls to COM
objects. It operates in the reverse of the PWWideStr by calling the
WideCharToMultiByte API function to map a wide-character (Unicode) string to a
character string.

A helper function called _cstr has been added to Plugware COM to support the
automatic conversion of BSTR return values to a Clarion CSTRING. It is prototyped
as follows:

_cstr(long bstrVal, short fFreeBStr = true),*cstring

The _cstr function is passed the BSTR parameter and returns the reference to a newly
created Clarion CSTRING.

 6

X M L F U S E G U I D E

Helper Classes
There are five classes provided for making the process of interfacing to the Win32
COM API easier:

PWCOMIniter

The PWCOMIniter should be the first object instantiated on each thread using the
Plugware COM classes. It calls the Win32 API function CoInitialize() to initialize
COM for that thread. When its destructor is called the CoUnInitialize() API function
is called. The PWCOMIniter must be instantiated before any of the other Plugware
COM classes to ensure that its destructor method is called after all other classes have
destructed.

PWCOMError

The PWCOMError class is responsible for translating COM errors returned as
HRESULTs into something readable to the developer or end user. The method of
interest to the developer inside the PWCOMError class is:

PWCOMError.GetError procedure(*cstring szErrorMsg, *long dwBufferLen,
HRESULT hr),long – This method fills the passed szErrorMsg with the results from
the Windows API error message for the passed HRESULT. This method uses the
FormatMessage API function internally.

PWDateTime

The PWDateTime class converts Clarion dates and times into values compatible with
COM objects. The methods of interest to the developer inside the PWDispatch class
are:

PWDateTime.Init procedure(*tVariant vtTime) – This method takes a variant of type
VT_DATE and initializes the PWDateTime structure with its contents.

PWDateTime.Init procedure(*real systime) – This method takes a Clarion real
containing a COleDateTime date/time value and initializes the PWDateTime structure
with its contents.

PWDateTime.Init procedure(*SYSTEMTIME systime) – This method takes a
Windows API SYSTEMTIME structure and initializes the PWDateTime with its
contents.

PWDateTime.Init procedure(date cwDate, time cwTime) – This method initializes the
PWDateTime structure with a Clarion date and time. Use this method in conjunction
with PWDateTime.GetAsCOleDateTime to pass dates to COM objects.

 7

X M L F U S E G U I D E

PWDateTime.GetAsCOleDateTime procedure(),real – This method returns the
contents of the PWDateTime structure as a real which is equivalent to the
COleDateTime class used in the Microsoft Foundation Classes (MFC). Most COM
objects will accept dates in this format.

PWDateTime.GetAsClarionDate procedure(),date – This method returns the contents
of the PWDateTime structure as a Clarion DATE. Use this method in conjunction
with PWDateTime.GetAsClarionTime to get the complete date/time component.

PWDateTime.GetAsClarionTime procedure(),time – This method returns the
contents of the PWDateTime structure as a Clarion TIME. Use this method in
conjunction with PWDateTime.GetAsClarionDate to get the complete date/time
component.

PWDateTime.Now procedure() – This method sets the PWDateTime structure to the
current time using the GetLocalTime API function.

PWInvokeHelper

The PWInvokeHelper class is used in late binding automation to handle parameter
passing to COM object methods via the PWDispatch.Invoke method. Plugware COM
provides a number of different versions of PWDispatch.Invoke which will be
discussed in the Late Binding Automation section of this documentation. These
Invoke methods will cover calling methods with up to 10 parameters; therefore, one
will generally not need to manipulate a PWInvokeHelper object directly. The easiest
way to understand the functionality of PWInvokeHelper is to follow the code in the
PWDispatch.Invoke methods in pwcom.clw.

PWSafeArray

The PWSafeArray encapsulates the functionality of the SAFEARRAY data type. A
SAFEARRAY is an array which includes boundary information. This provides the
developer with the size and dimensions of the array, thus eliminating the possibility of
out of bounds addressing errors. The PWSafeArray class effectively wraps the
SafeArray COM API functions defined in OLEAUT32.DLL. The methods of interest
to the developer inside the PWCOMError class are:

PWSafeArray.Attach procedure(procedure(*tVariant vtsa, short fSelfCleaning =
true),short) – This method attaches a PWSafeArray object to a variant returned from a
call to a COM object method. It returns true if the attach operation succeeds and false
if it fails.

PWSafeArray.Attach procedure(*_SAFEARRAY sa, short fSelfCleaning) – Attaches a
PWSafeArray object to a data structure of type _SAFEARRAY. It returns true if the
attach operation succeeds and false if it fails.

 8

X M L F U S E G U I D E

PWSafeArray._Create procedure(VARTYPE vt, long ulCount, long lLBound)–
Creates a new array of type vt (see pwcomdef.inc for a list of valid VARTYPEs) with a
size and the lower bound specification. It makes calls internally to SafeArrayCreate to
create the new array descriptor and allocate and initialize the data type for the array.

PWSafeArray._Copy procedure(*HRESULT hr),*PWSafeArray - Copies the existing
PWSafeArray and returns a reference to the newly created PWSafeArray.

PWSafeArray.GetType procedure,long – Returns the type of SafeArray contained in
the PWSafeArray object. See pwcomdef.inc for a list of the valid VARTYPEs.

PWSafeArray.GetLowerBound procedure(long uDim = 0),long – Returns the lower
bound element of the SafeArray. This return value is zero based.

PWSafeArray.GetUpperBound procedure(long uDim = 0),long – Returns the upper
bound element of the SafeArray. This return value is zero based.

PWSafeArray.GetDimensions procedure(*long xElems, *long yElems, *long nDims) –
Returns the number of dimensions of the array and the number of elements in the x
and y dimensions.

PWSafeArray.GetDimension procedure(long nDim, *long nElems) – Returns the zero
based number of elements in the dimension specified by the first parameter. Pass 0 as
the first parameter to get the number of elements in the 1st dimension of the array.

PWSafeArray.AccessData procedure – Retrieves a pointer to the array data and
increments the lock count of the array. You must call PWSafeArray.UnaccessData
once you are finished manipulating the data after calling this method.

PWSafeArray.UnaccessData procedure – Calls SafeArrayUnaccessData internally to
decrement the lock count of the array. You should call this method once you are
finished manipulating the data after calling PWSafeArray.AccessData.

 9

X M L F U S E G U I D E

Early Binding Automation
The PWCOMObject class defined in pwcom.clw is responsible for handling the low
level instantiation of COM objects and the proper release of those interfaces once the
developer is finished using them. The PWDispatch class used in Late Binding
Automation is actually derived from the PWCOMObject and will be covered in the
next section.

PWCOMObject

PWApplication PWContactItem

PWCOMIniter

FIGURE 1.2 The relationship between the PWCOMObject and two of the Outlook COM objects, PWApplication and
PWContactItem. The dotted arrows indicate that the child objects are reliant on a PWCOMIniter being instantiated for the current
thread.

The methods of interest to the developer inside the PWCOMObject class are:

PWCOMObject.AttachExisting procedure(RCLSID rclsid, REFIID riid) - Attaches
the object to an existing instance of the CLSID passed in, if it exists, and attaches itself
to the IID passed as the second parameter.

PWCOMObject.CreateInstance procedure(REFCLSID rclsid, REFIID riid, long
dwClsContext = CLSCTX_ALL) – Uses the CoCreateInstance API call to create an
instance of the CLSID passed in. It attaches itself to the IID passed as the second
parameter. The third parameter is the context in which the code that manages the
newly created object will run in. It is taken from the CLSCTX itemized equates
defined in pwcomdef.inc.

PWCOMObject.GetInterface procedure(long pInterface, REFIID riid, *long
pvObject, short fRelease) – This method returns an interface from a pointer to an
IDispatch or IUnknown interface. The first parameter contains the long pointer to the
IDispatch interface passed in. The second parameter contains the IID of the interface
we wish to get back from the internal call to QueryInterface. The third parameter will
contain a pointer to the output interface. The fourth parameter is a true/false flag
where a true will cause the internally referenced IUnknown to release. This method
will be used most frequently in the early binding automation when a procedure call
returns a pointer to an IDispatch.

 10

X M L F U S E G U I D E

PWCOMObject.QueryInterface procedure(REFIID riid, *long pvObject) – This
method calls QueryInterface on the object wrapped in the current PWCOMObject.
This might be used when attaching PWCOMObject to IUnknown interfaces to
determine what kind of interface is contained in the object.

PWCOMObject.AddRef procedure – This is equivalent to calling IUnknown.AddRef
and is used internally by the PWCOMObject class.

PWCOMObject.Release procedure – This method releases the interface contained in
the PWCOMObject and is equivalent to calling IUnknown.Release. It maintains an
internal reference count to ensure that the object is released at the proper time.

PWCOMObject.Attach procedure(long pUnk, short fNoAddRef = false) – This
method attaches the object to a passed pointer to an IUnknown interface. The first
parameter contains the long pointer to the IUnknown interface we wish to attach to.
The second parameter determines whether we should call IUnkown.AddRef on this
interface.

 11

X M L F U S E G U I D E

Late Binding Automation
The PWDispatch class defined in pwcom.clw is the derived late bound version of the
PWCOMObject class. It encapsulates much of the functionality of working with
IDispatch interfaces. PWDispatch has been designed to abstract complexity away
from the development of COM automation solutions by providing a simple interface
with functions to perform type conversions and variant parameter passing. Figure 1.3
shows the relationship between PWDispatch and the classes it relies upon to get its job
done.

PWDispatch PWVariantFactory

 1

 PWVariant (tVariant) PWInvokeHelper

256

FIGURE 1.3 The PWVariantFactory object is a dependency of the PWDispatch class because variants are cached in the global
PWVariantFactory when handling the Invoke calls to the COM object inside PWDispatch. PWVariantFactory can have a maximum
of 256 cached variants at a time. PWInvokeHelper can be used independently of the PWVariantFactory to prepare parameter lists
and call Invoke on them.

PWVariantFactory is a class used by a global helper function called _vt. The _vt
function will convert Clarion data types into variants suitable for passing to COM
objects. The PWVariantFactory is globally instantiated and it is responsible for caching
the variants created when _vt is called. The PWVariantFactory stores a maximum of
256 cached variants to conserve memory (this can be edited in the
PWVariantFactory.Construct method in pwcom.clw) so you will see references to
PWVariantFactory.Release() in the examples to clear the cache for re-use.

The PWDispatch class relies on internal PWInvokeHelper objects inside its Invoke
methods to handle initializing the parameter lists before calling IDispatch.Invoke.
There are four versions of the PWDispatch.Invoke class which are of particular note.
They take 0, 1, 5, and 10 variant parameters respectively. This allows the COM
developer to pass optional parameters to procedures which take a long list. For those
rare instances in which you will need to pass more than 10 parameters to a COM
procedure you will need to instantiate your own PWInvokeHelper and use the
self.SetParam method similarly to the way it is used in the PWDispatch.Invoke method
for 10 parameters declared in pwcom.inc.

The methods of interest to the developer inside the PWDispatch class are:

 12

X M L F U S E G U I D E

PWDispatch.CreateInstance procedure(*cstring szObject) – Take a passed cstring
containing the name of the object to instantiate (i.e. ‘Outlook.Application’ for
Microsoft Outlook) and handles the internal calls into the COM API to call
CoCreateInstance on the proper CLSID.

PWDispatch.CreateInstance procedure(*cstring szProgID, long flags) – An overloaded
version of the CreateInstance above which takes a second parameter containing the
context in which the code that manages the newly created object will run in. It is taken
from the CLSCTX itemized equates defined in pwcomdef.inc.

PWDispatch.AttachExisting procedure(RCLSID rclsid) - Attaches the object to an
existing instance of the CLSID passed in, if it exists. The PWDispatch will then be
attached to the IDispatch interface of the object referenced by the CLSID.

PWDispatch.AttachExisting procedure(*cstring szProgID) – An overloaded version of
the AttachExisting above which takes a cstring containing the name of the existing
instance of an object to attach to (i.e. ‘Outlook.Application’ will attach to an existing
instance of Microsoft Outlook).

PWDispatch.Attach procedure(long pIDisp, short fNoAddRef) – This method
attaches the object to a passed pointer to an IDispatch interface. The first parameter
contains the long pointer to the IDispatch interface we wish to attach to. The second
parameter determines whether we should call IDispatch.AddRef on this interface.

PWDispatch.Attach procedure(*tVariant vtDisp, short fNoAddRef) – An overloaded
version of the Attach above which takes a variant parameter containing an IDispatch
interface instead of a long pointer to the interface. This allows us to attach a
PWDispatch to an output parameter from a call to PWDispatch.Invoke.

PWDispatch.Attach procedure(*IDispatch IDisp, short fNoAddRef) – An overloaded
version of the Attach above which takes an IDispatch interface parameter rather than a
long pointer or a variant.

We alluded to the Invoke methods earlier and discussed the fact that there are several
different versions depending on the number of parameters the COM method may
take. Optional parameters are handled easily with the variant vtMissing declared
globally in the Plugware COM classes. vtMissing can be used to pass empty or
optional parameters to the COM methods. The next section covers the use of the
PWDispatch.Invoke method (which is a wrapper around the IDispatch.Invoke COM
method) and gives examples of using the vtMissing variant to pass empty or optional
parameters.

PWDispatch.Invoke procedure(*cstring szMember, long wFlags, *tVariant vtRet, short
fDispatchPut) – This version of PWDispatch.Invoke takes no input parameters. The
first parameter is a cstring containing the name of the member method or property to

 13

X M L F U S E G U I D E

invoke. The second parameter is a flag for IDispatch::Invoke and can be one of the
following constants declared in pwcomdef.inc:

DISPATCH_METHOD – This Member is a COM object method to execute
DISPATCH_PROPERTYGET – This Member is a property we wish to retrieve
DISPATCH_PROPERTYPUT – This Member is a property we wish to put
DISPATCH_PROPERTYPUTREF – This Member is a property we wish to but by reference, not by value

The third parameter is a variant output parameter from the Invoke call. It will contain
the return value from the call to IDispatch.Invoke once it has completed. The fourth
parameter is a true/false flag and should be set to true only when the COM object
expects a put-by-reference rather than a put-by-value. An example call is listed below:

 szMember = 'Count'
 hr = DispInboxItems.Invoke(szMember, DISPATCH_PROPERTYGET, vtIDisp)

PWDispatch.Invoke procedure(*cstring szMember, long wFlags, *tVariant vtParam1,
*tVariant vtRet, short fDispatchPut = false) – This version of PWDispatch.Invoke is
identical to the one above except it takes one input parameter called vtParam1. The
other parameters are treated the same as the version which takes no input parameters.
An example call is listed below:

 szMember = 'GetDefaultFolder'
 hr = DispNamespace.Invoke(szMember, DISPATCH_METHOD, _vt(lolFolderInbox), vtIDisp)

PWDispatch.Invoke procedure(*cstring szMember, long wFlags, long nParams,
*tVariant vtParam1, *tVariant vtParam2, *tVariant vtParam3, *tVariant vtParam4,
*tVariant vtParam5, *tVariant vtRet, short fDispatchPut) – This version of
PWDispatch.Invoke is identical to the one above except it takes five input parameters
called vtParam1, vtParam2, vtParam3, vtParam4, and vtParam5. This method can be
used for procedures which take between 1 and 5 parameters because we can pass a
vtMissing for parameters which we wish to omit. An example call listed below uses
this version to call a method requiring only one parameter:

 szMember = 'GetDefaultFolder'
 hr = DispNamespace.Invoke(szMember, DISPATCH_METHOD, _vt(lolFolderInbox), _vt(vtMissing), _vt(vtMissing),
_vt(vtMissing), _vt(vtMissing), vtIDisp)

PWDispatch.Invoke procedure(*cstring szMember, long wFlags, long nParams,
*tVariant vtParam1, *tVariant vtParam2, *tVariant vtParam3, *tVariant vtParam4,
*tVariant vtParam5, *tVariant vtParam6, *tVariant vtParam7, *tVariant vtParam8,
*tVariant vtParam9, *tVariant vtParam10, *tVariant vtRet, short fDispatchPut) – This
version of PWDispatch.Invoke is identical to the one above except it takes ten input
parameters called vtParam1, …, vtParam10. This method can be used for procedures
which take between 1 and 10 parameters using the vtMissing variant.

 14

X M L F U S E G U I D E

Multi-DLL Considerations
Plugware COM provides support for compiling the classes into a multi-DLL project.
All Plugware COM products ship with the pwcom.exp file installed into the Libsrc
directory. This export file should be merged into the export file of the DLL containing
your base class declarations and data. Once you have done this the Plugware COM
objects can be referenced from any DLL or EXE which references this base DLL.

The linking of the classes is handled using project pragma settings similar to the way
the ABC classes are exported in Clarion. A list of the pragmas for exporting the
Plugware COM class definitions is described below for those who prefer to hand code
their project in Clarion:

Applications Compiled with Data Local to the Module

%#pragma define(_APIDllMode_=>off)

%#pragma define(_APILinkMode=>on)

%#pragma define(_COMDllMode_=>off)

%#pragma define(_COMLinkMode_=>on)

Applications Compiled with Data External to the Module

%#pragma define(_APIDllMode_=>on)

%#pragma define(_APILinkMode=>off)

%#pragma define(_COMDllMode_=>on)

%#pragma define(_COMLinkMode_=>off)

 15

X M L F U S E G U I D E

xmlFUSE Overview
xmlFUSE consists of wrapper classes for the Microsoft XML 4.0 SDK and the
Microsoft SOAP 3.0 SDK. The fourteen source files which form the xmlFUSE
product and the early bound version wrappers for MS XML 4.0 and MS SOAP 3.0 are:

msxml2int.inc – Contains the Microsoft XML 4.0 COM object model interfaces
defined with Clarion compatible prototypes. It is included by the msxml2.inc and
msxml21.inc file.

msxml2iid.inc – Contains the definitions for the CLSID and IID values for the entire
Microsoft XML 4.0 COM object model. It is included by the msxml2int.inc file.

msxml2def.inc – Contains the Microsoft XML 4.0 COM object model constants
defined as Clarion equates. It is included by the msxml2int.inc file.

msxml2.inc – Contains the Plugware COM classes to implement the interfaces
defined in msxml2int.inc.

msxml2.clw – Contains the source implementation of the classes defined in
msxml2.inc.

msxml21.inc – Contains the second portion of the Plugware COM classes to
implement the interfaces defined in msxml21.inc.

msxml21.clw – Contains the source implementation of the class defined in
msxml21.inc.

msoapint.inc – Contains the Microsoft SOAP 3.0 COM object model interfaces
defined with Clarion compatible prototypes. It is included by the msoap.inc and
msoap1.inc file.

msoapiid.inc – Contains the definitions for the CLSID and IID values for the entire
Microsoft SOAP 3.0 COM object model. It is included by the msoapint.inc file.

msoapdef.inc – Contains the Microsoft SOAP 3.0 COM object model constants
defined as Clarion equates. It is included by the msoapint.inc file.

msoap.inc – Contains the Plugware COM classes to implement the interfaces defined
in msoapint.inc.

msoap.clw – Contains the source implementation of the classes defined in msoap.inc.

msoap1.inc – Contains the second portion of the Plugware COM classes to
implement the interfaces defined in msxml21.inc.

 16

X M L F U S E G U I D E

msoap1.clw – Contains the source implementation of the class defined in msoap1.inc.

This manual assumes that you have access to the Microsoft XML 4.0 Parser SDK and
the Microsoft SOAP 3.0 Toolkit documentation contained in the installations from
Microsoft. If you have not installed the toolkits, please visit the following links:

MSXML 4.0 Service Pack 2 (Microsoft XML Core Services)

http://www.microsoft.com/downloads/details.aspx?familyid=3144B72B-B4F2-
46DA-B4B6-C5D7485F2B42&displaylang=en

Microsoft SOAP Toolkit 3.0 Download

http://www.microsoft.com/downloads/details.aspx?FamilyId=C943C0DD-CEEC-
4088-9753-86F052EC8450&displaylang=en

List of Interfaces
The following table lists the interfaces contained in the xmlFUSE product along with
their equivalent Microsoft XML or SOAP interface name and their file location. Due
to the size of the wrapper and Clarion’s limitations with respect to the number of class
definitions in each source file, xmlFUSE has been split up into four source files with
each one having a maximum of 40 class definitions corresponding to an interface in
either MS XML or MS SOAP. Please refer to the Microsoft XML 4.0 Parser SDK and
the Microsoft SOAP Toolkit User Guide for more details on what each interface
accomplishes when automating MS XML and MS SOAP.

xmlFUSE Interface Microsoft Interface Name Source File Interface Type
PWIAttachment IAttachment msoap.inc MS SOAP 3.0 Interface
PWIByteArrayAttachment IByteArrayAttachment msoap.inc MS SOAP 3.0 Interface
PWIComposerDestination IComposerDestination msoap.inc MS SOAP 3.0 Interface
PWIDataEncoder IDataEncoder msoap.inc MS SOAP 3.0 Interface
PWIDataEncoderFactory IDataEncoderFactory msoap.inc MS SOAP 3.0 Interface
PWIDimeComposer IDimeComposer msoap.inc MS SOAP 3.0 Interface
PWIDimeParser IDimeParser msoap.inc MS SOAP 3.0 Interface
PWIDSOControl IDSOControl msxml2.inc MS XML 4.0 Interface
PWIEnumSoapMappers IEnumSoapMappers msoap.inc MS SOAP 3.0 Interface
PWIEnumWSDLOperations IEnumWSDLOperations msoap.inc MS SOAP 3.0 Interface
PWIEnumWSDLPorts IEnumWSDLPorts msoap.inc MS SOAP 3.0 Interface
PWIEnumWSDLService IEnumWSDLService msoap.inc MS SOAP 3.0 Interface
PWIErrorInfo IErrorInfo msoap.inc MS SOAP 3.0 Interface
PWIFileAttachment IFileAttachment msoap.inc MS SOAP 3.0 Interface
PWIGCTMObjectFactory IGCTMObjectFactory msoap.inc MS SOAP 3.0 Interface
PWIGetComposerDestination IGetComposerDestination msoap.inc MS SOAP 3.0 Interface
PWIGetParserSource IGetParserSource msoap.inc MS SOAP 3.0 Interface
PWIHeaderHandler IHeaderHandler msoap.inc MS SOAP 3.0 Interface

 17

http://www.microsoft.com/downloads/details.aspx?familyid=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=C943C0DD-CEEC-4088-9753-86F052EC8450&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=C943C0DD-CEEC-4088-9753-86F052EC8450&displaylang=en

X M L F U S E G U I D E

PWIMessageComposer IMessageComposer msoap.inc MS SOAP 3.0 Interface
PWIMessageParser IMessageParser msoap.inc MS SOAP 3.0 Interface
PWIMXAttributes IMXAttributes msxml2.inc MS XML 4.0 Interface
PWIMXNamespaceManager IMXNamespaceManager msxml2.inc MS XML 4.0 Interface
PWIMXNamespacePrefixes IMXNamespacePrefixes msxml2.inc MS XML 4.0 Interface
PWIMXReaderControl IMXReaderControl msxml2.inc MS XML 4.0 Interface
PWIMXSchemaDeclHandler IMXSchemaDeclHandler msxml2.inc MS XML 4.0 Interface
PWIMXWriter IMXWriter msxml2.inc MS XML 4.0 Interface
PWIParserSource IParserSource msoap.inc MS SOAP 3.0 Interface
PWIReceivedAttachment IReceivedAttachment msoap.inc MS SOAP 3.0 Interface
PWIReceivedAttachments IReceivedAttachments msoap.inc MS SOAP 3.0 Interface
PWISAXAttributes ISAXAttributes msxml2.inc MS XML 4.0 Interface
PWISAXContentHandler ISAXContentHandler msxml2.inc MS XML 4.0 Interface
PWISAXDeclHandler ISAXDeclHandler msxml2.inc MS XML 4.0 Interface
PWISAXDTDHandler ISAXDTDHandler msxml2.inc MS XML 4.0 Interface
PWISAXEntityResolver ISAXEntityResolver msxml2.inc MS XML 4.0 Interface
PWISAXErrorHandler ISAXErrorHandler msxml2.inc MS XML 4.0 Interface
PWISAXLexicalHandler ISAXLexicalHandler msxml2.inc MS XML 4.0 Interface
PWISAXLocator ISAXLocator msxml2.inc MS XML 4.0 Interface
PWISAXXMLFilter ISAXXMLFilter msxml2.inc MS XML 4.0 Interface
PWISAXXMLReader ISAXXMLReader msxml2.inc MS XML 4.0 Interface
PWISchema ISchema msxml2.inc MS XML 4.0 Interface
PWISchemaAny ISchemaAny msxml2.inc MS XML 4.0 Interface
PWISchemaAttribute ISchemaAttribute msxml2.inc MS XML 4.0 Interface
PWISchemaAttributeGroup ISchemaAttributeGroup msxml2.inc MS XML 4.0 Interface
PWISchemaComplexType ISchemaComplexType msxml2.inc MS XML 4.0 Interface
PWISchemaElement ISchemaElement msxml2.inc MS XML 4.0 Interface
PWISchemaIdentityConstraint ISchemaIdentityConstraint msxml2.inc MS XML 4.0 Interface
PWISchemaItem ISchemaItem msxml2.inc MS XML 4.0 Interface
PWISchemaItemCollection ISchemaItemCollection msxml2.inc MS XML 4.0 Interface
PWISchemaModelGroup ISchemaModelGroup msxml2.inc MS XML 4.0 Interface
PWISchemaNotation ISchemaNotation msxml2.inc MS XML 4.0 Interface
PWISchemaParticle ISchemaParticle msxml2.inc MS XML 4.0 Interface
PWISchemaStringCollection ISchemaStringCollection msxml2.inc MS XML 4.0 Interface
PWISchemaType ISchemaType msxml2.inc MS XML 4.0 Interface
PWISentAttachments ISentAttachments msoap.inc MS SOAP 3.0 Interface
PWISequentialStream ISequentialStream msoap.inc MS SOAP 3.0 Interface
PWIServerXMLHTTPRequest IServerXMLHTTPRequest msxml2.inc MS XML 4.0 Interface
PWIServerXMLHTTPRequest2 IServerXMLHTTPRequest2 msxml2.inc MS XML 4.0 Interface
PWISimpleComposer ISimpleComposer msoap.inc MS SOAP 3.0 Interface
PWISimpleParser ISimpleParser msoap.inc MS SOAP 3.0 Interface
PWISoapClient ISoapClient msoap.inc MS SOAP 3.0 Interface
PWISoapConnector ISoapConnector msoap.inc MS SOAP 3.0 Interface
PWISoapConnectorFactory ISoapConnectorFactory msoap.inc MS SOAP 3.0 Interface
PWISoapError ISoapError msoap.inc MS SOAP 3.0 Interface
PWISoapErrorInfo ISoapErrorInfo msoap.inc MS SOAP 3.0 Interface

 18

X M L F U S E G U I D E

PWISoapMapper ISoapMapper msoap.inc MS SOAP 3.0 Interface
PWISoapReader ISoapReader msoap.inc MS SOAP 3.0 Interface
PWISoapSerializer ISoapSerializer msoap.inc MS SOAP 3.0 Interface
PWISoapServer ISoapServer msoap.inc MS SOAP 3.0 Interface
PWISoapTypeMapper ISoapTypeMapper msoap.inc MS SOAP 3.0 Interface
PWISoapTypeMapperFactory ISoapTypeMapperFactory msoap.inc MS SOAP 3.0 Interface
PWIStream IStream msoap.inc MS SOAP 3.0 Interface
PWIStreamAttachment IStreamAttachment msoap.inc MS SOAP 3.0 Interface
PWIStringAttachment IStringAttachment msoap.inc MS SOAP 3.0 Interface
PWIVBMXNamespaceManager IVBMXNamespaceManager msxml2.inc MS XML 4.0 Interface
PWIVBSAXAttributes IVBSAXAttributes msxml2.inc MS XML 4.0 Interface
PWIVBSAXContentHandler IVBSAXContentHandler msxml2.inc MS XML 4.0 Interface
PWIVBSAXDeclHandler IVBSAXDeclHandler msxml2.inc MS XML 4.0 Interface
PWIVBSAXDTDHandler IVBSAXDTDHandler msxml2.inc MS XML 4.0 Interface
PWIVBSAXEntityResolver IVBSAXEntityResolver msxml2.inc MS XML 4.0 Interface
PWIVBSAXErrorHandler IVBSAXErrorHandler msxml21.inc MS XML 4.0 Interface
PWIVBSAXLexicalHandler IVBSAXLexicalHandler msxml21.inc MS XML 4.0 Interface
PWIVBSAXLocator IVBSAXLocator msxml21.inc MS XML 4.0 Interface
PWIVBSAXXMLFilter IVBSAXXMLFilter msxml21.inc MS XML 4.0 Interface
PWIVBSAXXMLReader IVBSAXXMLReader msxml21.inc MS XML 4.0 Interface
PWIWSDLBinding IWSDLBinding msoap1.inc MS SOAP 3.0 Interface
PWIWSDLMessage IWSDLMessage msoap1.inc MS SOAP 3.0 Interface
PWIWSDLOperation IWSDLOperation msoap1.inc MS SOAP 3.0 Interface
PWIWSDLPort IWSDLPort msoap1.inc MS SOAP 3.0 Interface
PWIWSDLReader IWSDLReader msoap1.inc MS SOAP 3.0 Interface
PWIWSDLService IWSDLService msoap1.inc MS SOAP 3.0 Interface
PWIXMLAttribute IXMLAttribute msxml21.inc MS XML 4.0 Interface
PWIXMLDocument IXMLDocument msxml21.inc MS XML 4.0 Interface
PWIXMLDocument2 IXMLDocument2 msxml21.inc MS XML 4.0 Interface
PWIXMLDOMAttribute IXMLDOMAttribute msxml21.inc MS XML 4.0 Interface
PWIXMLDOMCDATASection IXMLDOMCDATASection msxml21.inc MS XML 4.0 Interface
PWIXMLDOMCharacterData IXMLDOMCharacterData msxml21.inc MS XML 4.0 Interface
PWIXMLDOMComment IXMLDOMComment msxml21.inc MS XML 4.0 Interface
PWIXMLDOMDocument IXMLDOMDocument msxml21.inc MS XML 4.0 Interface
PWIXMLDOMDocument2 IXMLDOMDocument2 msxml21.inc MS XML 4.0 Interface
PWIXMLDOMDocumentFragment IXMLDOMDocumentFragment msxml21.inc MS XML 4.0 Interface
PWIXMLDOMDocumentType IXMLDOMDocumentType msxml21.inc MS XML 4.0 Interface
PWIXMLDOMElement IXMLDOMElement msxml21.inc MS XML 4.0 Interface
PWIXMLDOMEntity IXMLDOMEntity msxml21.inc MS XML 4.0 Interface
PWIXMLDOMEntityReference IXMLDOMEntityReference msxml21.inc MS XML 4.0 Interface
PWIXMLDOMImplementation IXMLDOMImplementation msxml21.inc MS XML 4.0 Interface
PWIXMLDOMNamedNodeMap IXMLDOMNamedNodeMap msxml21.inc MS XML 4.0 Interface
PWIXMLDOMNode IXMLDOMNode msxml21.inc MS XML 4.0 Interface
PWIXMLDOMNodeList IXMLDOMNodeList msxml21.inc MS XML 4.0 Interface
PWIXMLDOMNotation IXMLDOMNotation msxml21.inc MS XML 4.0 Interface
PWIXMLDOMParseError IXMLDOMParseError msxml21.inc MS XML 4.0 Interface

 19

X M L F U S E G U I D E

PWIXMLDOMProcessingInstruction IXMLDOMProcessingInstruction msxml21.inc MS XML 4.0 Interface
PWIXMLDOMSchemaCollection IXMLDOMSchemaCollection msxml21.inc MS XML 4.0 Interface
PWIXMLDOMSchemaCollection2 IXMLDOMSchemaCollection2 msxml21.inc MS XML 4.0 Interface
PWIXMLDOMSelection IXMLDOMSelection msxml21.inc MS XML 4.0 Interface
PWIXMLDOMText IXMLDOMText msxml21.inc MS XML 4.0 Interface
PWIXMLElement IXMLElement msxml21.inc MS XML 4.0 Interface
PWIXMLElement2 IXMLElement2 msxml21.inc MS XML 4.0 Interface
PWIXMLElementCollection IXMLElementCollection msxml21.inc MS XML 4.0 Interface
PWIXMLError IXMLError msxml21.inc MS XML 4.0 Interface
PWIXMLHTTPRequest IXMLHTTPRequest msxml2.inc MS XML 4.0 Interface
PWIXSLProcessor IXSLProcessor msxml21.inc MS XML 4.0 Interface
PWIXSLTemplate IXSLTemplate msxml21.inc MS XML 4.0 Interface
PWIXTLRuntime IXTLRuntime msxml21.inc MS XML 4.0 Interface
PWXMLDOMDocumentEvents XMLDOMDocumentEvents msxml21.inc MS XML 4.0 Interface

xmlFUSE Procedures
xmlFUSE ships with a number of procedures in the example application which are
intended to be reused. They aid in serializing Clarion data structures to XML and
converting XML back into GROUPs, QUEUEs or FILEs. These procedures are also
good learning tools for learning to write your own specialized XML code in Clarion.
The procedures and their purpose are as follows:

XMLAppendChildNode (*PWIXMLDOMNode xmlNodeSource,
*PWIXMLDOMNode xmlNodeDest),*PWIXMLDOMNode – This procedure
wraps the PWIXMLDOMNode.appendchild method call defined in msxml21.inc. It
is passed a source node (xmlNodeSource) and a destination node (xmlNodeDest). It
appends the source node to the destination node and returns a reference to the new
child node successfully appended to the list. It returns NULL if no object is created.
Location: xmlfuse.app, procedure MSXMLExamples, routine CreateXMLUsingDOM

XMLAppendChildTextNode (*cstring szText, *PWIXMLDOMDocument2 xmlDoc,
*PWIXMLDOMNode xmlNode),*PWIXMLDOMText – This procedure wraps the
PWIXMLDOMDocument.createTextNode and PWIXMLDOMNode.appendchild
method calls defined in mxsml21.inc. It is passed a Clarion CSTRING (szText), a
created XML Document (xmlDoc), and a destination node (xmlNode). It appends a
child text node to the destination node and returns a reference to the newly created
text node. Location: xmlfuse.app, procedure ProcessConver ContactsToXML, method
TakeWindowEvent

t

XMLConvertDOMtoFILE (*PWIXMLDOMNode xmlParentNode, *file fConvert,
long lMapping) - This procedure is passed a parent XML DOM node (xmlNode), a
Clarion FILE (fConvert), and the mapping (lMapping) for either mapping by field
order (XMLFUSE:MapByOrder) or mapping by field name

 20

X M L F U S E G U I D E

(XMLFUSE:MapByName). It will take the children of the parent node and append
their text contents into the FILE structure either by field order or by field name.
Location: xmlfuse.app, procedure MSXMLExamples, routine
ConvertClarionFILEtoDOM

XMLConvertDOMtoGROUP (*PWIXMLDOMNode xmlNode, *group
grpConvert, long lMapping) – This procedure is passed a parent XML DOM node
(xmlNode), a Clarion GROUP (grpConvert), and the mapping (lMapping) for either
mapping by field order (XMLFUSE:MapByOrder) or mapping by field name
(XMLFUSE:MapByName). It will take the children of the parent node and put their
text contents into the GROUP structure either by field order or by field name.
Location: xmlfuse.app, procedure MSXMLExamples, routine
ConvertClarionFILEtoDOM

XMLConvertDOMtoQUEUE (*PWIXMLDOMNode xmlParentNode, *queue
qConvert, long lMapping) - This procedure is passed a parent XML DOM node
(xmlNode), a Clarion QUEUE (qConvert), and the mapping (lMapping) for either
mapping by field order (XMLFUSE:MapByOrder) or mapping by field name
(XMLFUSE:MapByName). It will take the children of the parent node and append
their text contents into the QUEUE structure either by field order or by field name.
Location: xmlfuse.app, procedure MSXMLExamples, routine
ConvertClarionQUEUEtoDOM

XMLConvertFILEToDOM (*file fConvert, *PWIXMLDOMDocument2 xmlDoc,
long lMapping),*PWIXMLDOMNode - This procedure is passed a Clarion FILE
(fConvert), a created XML Document (xmlDoc), and the mapping (lMapping) for
either mapping by field order (XMLFUSE:MapByOrder) or mapping by field name
(XMLFUSE:MapByName). It returns a reference to the parent node of the created
XML DOM. Location: xmlfuse.app, procedure MSXMLExamples, routine
ConvertClarionFILEtoDOM

XMLConvertGROUPToDOM (*group grpConvert, *PWIXMLDOMDocument2
xmlDoc, long lMapping),*PWIXMLDOMNode – This procedure is passed a Clarion
GROUP (grpConvert), a created XML Document (xmlDoc), and the mapping
(lMapping) for either mapping by field order (XMLFUSE:MapByOrder) or mapping
by field name (XMLFUSE:MapByName). It returns a reference to the parent node of
the created XML DOM. Location: xmlfuse.app, procedure MSXMLExamples, routine
ConvertClarionGROUPtoDOM

XMLConvertGROUPToDOMNodeList (*cstring szdocElementName, *group
grpConvert, *PWIXMLDOMDocument2 xmlDoc),*PWIXMLDOMNodeList – This
procedure is used to pass complex data types to SOAP methods which require them.
It is passed a Clarion CSTRING (szdocElementName), a Clarion GROUP
(grpConvert) and a created XML Document (xmlDoc). It returns a

 21

X M L F U S E G U I D E

PWIXMLDOMNodeList containing the field pairs for the name and the data.
Location: xmlfuse.app, procedure MSSOAPExamples, routine AmazonSOAPExample

XMLConvertQUEUEToDOM (*queue qConvert, *PWIXMLDOMDocument2
xmlDoc, long lMapping),*PWIXMLDOMNode – This procedure is passed a Clarion
QUEUE (qConvert), a created XML Document (xmlDoc), and the mapping
(lMapping) for either mapping by field order (XMLFUSE:MapByOrder) or mapping
by field name (XMLFUSE:MapByName). It returns a reference to the parent node of
the created XML DOM. Location: xmlfuse.app, procedure MSXMLExamples, routine
ConvertClarionQUEUEtoDOM

XMLCreateAttribute (*cstring szAttribute, *PWIXMLDOMDocument2
xmlDoc),*PWIXMLDOMAttribute – This procedure is a wrapper around the
PWIXMLDOMDocument.createAttribute method call defined in msxml21.inc. It is
passed a Clarion CSTRING (szAttribute) and a created XML Document (xmlDoc). It
returns a newly created PWIXMLDOMAttribute object. Location: xmlfuse.app,
procedure MSXMLExamples, routine C eateXMLUsingDOM r

XMLCreateCDATASection (*cstring szData, *PWIXMLDOMDocument2
xmlDoc),*PWIXMLDOMCDATASection – This procedure is a wrapper around the
PWIXMLDOMDocument.createCDATASection method call defined in msxml21.inc.
It is passed a Clarion CSTRING (szData) and a created XML Document (xmlDoc). It
returns a newly created PWIXMLDOMCDATASection object. Location: xmlfuse.app,
procedure MSXMLExamples, routine C eateXMLUsingDOM r

XMLCreateComment (*cstring szComment, *PWIXMLDOMDocument2
xmlDoc),*PWIXMLDOMComment – This procedure is a wrapper around the
PWIXMLDOMDocument.createComment method call defined in msxml21.inc. It is
passed a Clarion CSTRING (szComment) and a created XML Document (xmlDoc).
It returns a newly created PWIXMLDOMComment object. Location: xmlfuse.app,
procedure MSXMLExamples, routine C eateXMLUsingDOM r

XMLCreateDocumentFragment (*PWIXMLDOMDocument2
xmlDoc),*PWIXMLDOMDocumentFragment – This procedure is a wrapper around
the PWIXMLDOMDocument.createDocumentFragment method call defined in
msxml21.inc. It is passed a created XML Document (xmlDoc). It returns a newly
created PWIXMLDOMDocumentFragment object. Location: xmlfuse.app, procedure
MSXMLExamples, routine CreateXMLUsingDOM

XMLCreateElement (*cstring szElement, *PWIXMLDOMDocument2
xmlDoc),*PWIXMLDOMElement – This procedure is a wrapper around the
PWIXMLDOMDocument.createElement method call defined in msxml21.inc. It is
passed a Clarion CSTRING (szElement) and a created XML Document (xmlDoc). It
returns a newly created PWIXMLDOMElement object. Location: xmlfuse.app,
procedure MSXMLExamples, routine C eateXMLUsingDOM r

 22

X M L F U S E G U I D E

XMLCreateProcessingInstruction (*cstring szTarget, *cstring szData,
*PWIXMLDOMDocument2 xmlDoc),*PWIXMLDOMProcessingInstruction – This
procedure is a wrapper around the xmlDoc.createProcessingInstruction method call
defined in msxml21.inc. It is passed a Clarion CSTRING (szTarget), a second Clarion
CSTRING (szData) and a created XML Document (xmlDoc). It returns a newly
created PWIXMLDOMProcessingInstruction object. Location: xmlfuse.app, procedure
MSXMLExamples, routine CreateXMLUsingDOM

XMLCreateTextNode (*cstring szTagName, *PWIXMLDOMDocument2
xmlDoc),*PWIXMLDOMText – This procedure is a wrapper around the
PWIXMLDOMDocument.createTextNode method call defined in msxml21.inc. It is
passed a clarion CSTRING (szTagName) and a created XML Document (xmlDoc). It
returns a newly created PWIXMLDOMText object. Location: xmlfuse.app, procedure
MSXMLExamples, routine CreateXMLUsingDOM

XMLGetFirstChild (*PWIXMLDOMNode xmlNode),*PWIXMLDOMNode – This
procedure is a wrapper around the PWIXMLDOMNode.get_firstChild method call
defined in msxml21.inc. It is passed a parent DOM node (xmlNode). It returns the
first child node contained in the passed parent node. Location: xmlfuse.app, procedure
MSXMLExamples, routine ConvertDOMtoClarionGROUP

XMLGetXMLString (*PWIXMLDOMNode xmlNode),*cstring – This procedure
takes a DOM node as an input parameter (xmlNode) and returns a Clarion CSTRING
containing the XML for that node and its children. Location: xmlfuse.app, procedure
MSXMLExamples, routine ConvertDOMtoClarionGROUP

XMLLoadDocument (*PWIXMLDOMDocument2 Obj, *cstring szUrl, *short
_fResult),HRESULT – This procedure is a wrapper around the
PWIXMLDOMDocument.Load method call defined in msxml21.inc. It loads an
XML document (szUrl) into the passed PWIXMLDOMDocument2 (Obj) and returns
the result of the load operation (_fResult). Location: xmlfuse.app, procedure
XMLTransformUsingXSL

XMLParseUsingSAX (PWISAXXMLReader Reader, *cstring szFilename),HRESULT
– This procedure is a wrapper around the PWISAXXMLReader.ParseURL method
call defined in msxml2.inc. It parses an XML document whose location is passed in a
Clarion CSTRING (szFilename) and gives control of the parsing to the
PWISAXXMLReader (Reader) object. Location: xmlfuse.app, procedure
XMLTransformUsingXSL

XMLRemoveChildNode (*PWIXMLDOMNode xmlChild, *PWIXMLDOMNode
xmlParent),*PWIXMLDOMNode – This procedure is a wrapper around the
PWIXMLDOMNode.removeChild method call defined in msxml21.inc. It takes a
child DOM node (xmlChild) and the parent of that child (xmlParent) and removes the
child node from the parent’s tree. It returns the removed child to the caller.
Location: xmlfuse.app, procedure MSXMLExamples, routine CreateXMLUsingDOM

 23

X M L F U S E G U I D E

XMLReplaceChildNode (*PWIXMLDOMNode xmlNewChild,
*PWIXMLDOMNode xmlOldChild, *PWIXMLDOMNode
xmlParent),*PWIXMLDOMNode – This procedure is a wrapper around the
PWIXMLDOMNode.replaceChild method call defined in msxml21.inc. It takes a
replacement child DOM node (xmlNewChild), the node to be replaced (xmlOldChild)
and the parent node of the child to be replaced (xmlParent). It replaces the node and
returns the old child that is replaced to the caller. Location: xmlfuse.app, procedure
MSXMLExamples, routine CreateXMLUsingDOM

XMLTransformUsingXSL (*cstring szXMLFile, *cstring szXSLFile, <*cstring
szOutputFile>),*cstring – This procedure takes the path or URL of an XML file
(szXMLFile), the path or URL of an XSL file (szXSLFile) and an optional file
parameter to save a copy of the transformed result (szOutputFile). It returns the
output of the XSL transformation to the caller in a Clarion CSTRING. Location:
xmlfuse.app, procedure MSXMLExamples, routine TransformXMLUsingXSL

GetURL (string sMethod, string sURL, <string sParams>),*cstring – This procedure
uses MS XML HTTP to return the contents of an Internet URL. It is passed the
HTTP method parameter (sMethod), the URL of the document to retrieve (sURL)
and an option parameter containing parameters to pass to the URL (sParams). It
returns the contents of the URL to the caller. Location: xmlfuse.app, procedure
MSXMLHTTPExamples, routine GetSiteContents

PostURL (string sMethod, string sURL, string sParams),*cstring – This procedure uses
MS XML HTTP to POST form fields to a web page on the Internet. It is passed the
HTTP method parameter (sMethod), the URL of the document to POST to (sURL)
and the parameters to POST to the web page (sParams). It returns the response from
the HTTP POST request to the caller. Location: xmlfuse.app, procedure
MSXMLHTTPExamples, routines POSTToAuthorizeNET and
POSTToThinkDataGuestBook

GetBytesFromSafeArray (*tVariant vtSafeArray), *string – This procedure converts a
SafeArray retrieved from a COM object into a Clarion STRING and will commonly be
used to retrieve images from the Internet using MS XML HTTP. Location:
xmlfuse.app, procedure DownloadImage

DownloadImage (string sURL),*string – This procedure wraps the
GetBytesFromSafeArray procedure. It is passed the URL of the image or data to
return in binary format (sURL). It returns the data as a Clarion STRING to the caller.
Location: xmlfuse.app, procedure MSXMLHTTPExamples, routine
DownloadImageFromURL

 24

X M L F U S E G U I D E

StripHTMLTags (*cstring szHTML) – This rudimentary procedure take a Clarion
CSTRING and removes all of the HTML tags. It uses regular expressions to
accomplish this task. It is not meant to be an exhaustive solution to this problem – it
should be treated as a starting point from which to code a more specialized version.
Location: xmlfuse.app, procedure MSXMLHTTPExamples, button
?Strip:HTML:Tags

New Procedures in xmlFUSE version 1.1

XMLGetLastChild (*PWIXMLDOMNode xmlNode),*PWIXMLDOMNode – This
procedure is a wrapper around the PWIXMLDOMNode.get_lastChild method call
defined in msxml21.inc. It is passed a parent DOM node (xmlNode). It returns the
last child node contained in the passed parent node. Location: xmlfuse.app, procedure
RSSSupport, routine FetchRSSFeed

XMLGetNextSibling (*PWIXMLDOMNode xmlNode),*PWIXMLDOMNode –
This procedure is a wrapper around the PWIXMLDOMNode.get_nextSibling method
call defined in msxml21.inc. It is passed a parent DOM node (xmlNode). It returns
the next sibling node contained in the passed parent node. Location: xmlfuse.app,
procedure RSSSupport, routine FetchRSSFeed

XMLGetNodeName (*PWIXMLDOMNode xmlNode),*cstring – This procedure is a
wrapper around the PWIXMLDOMNode.get_nodeName method call defined in
msxml21.inc. It is passed a DOM node (xmlNode). It returns a *cstring containing
the name of the node. You must dispose this *cstring when you are finished with it to
prevent a memory leak. Location: xmlfuse.app, procedure RSSSupport, routine
FetchRSSFeed

XMLGetNodeValue (*PWIXMLDOMNode xmlNode),*cstring – This procedure is a
wrapper around the PWIXMLDOMNode.get_nodeValue method call defined in
msxml21.inc. It is passed a DOM node (xmlNode). It returns a *cstring containing
the value of the node. You must dispose this *cstring when you are finished with it to
prevent a memory leak. Location: xmlfuse.app, procedure RSSSupport, routine
FetchRSSFeed

XMLGetNodeText (*PWIXMLDOMNode xmlNode),*cstring – This procedure is a
wrapper around the PWIXMLDOMNode.get_text method call defined in
msxml21.inc. It is passed a DOM node (xmlNode). It returns a *cstring containing
the text value of the node. You must dispose this *cstring when you are finished with
it to prevent a memory leak. Location: xmlfuse.app, procedure RSSSupport, routine
FetchRSSFeed

XMLFindNodeByName (*PWIXMLDOMNode xmlParent, string
sNodeName),*PWIXMLDOMNode – This procedure uses several other helper
procedures to find a node beneath a parent using its name for identification. It is
passed a parent DOM node (xmlNode) and the name of the node to search for

 25

X M L F U S E G U I D E

(sNodeName). If the node exists it returns the *PWIXMLDOMNode object,
otherwise it returns null. Location: xmlfuse.app, procedure RSSSupport, routine
FetchRSSFeed

New Procedures in xmlFUSE version 2.0

DownloadURLToFile (string sURL, string sOutputFile),byte,proc – This procedure
wraps the GetBytesFromSafeArray procedure. It is passed the URL of the image or
data to return in binary format (sURL). It saves the resulting data in the location
specified by the sOutputFile parameter. Location: xmlfuse.app, procedure
MSXMLHTTPExamples, routine DownloadURLToFile

XMLConvertDOMNodeListToCstring (*PWIXMLDOMNodeList
xmlNodeList),*cstring – This procedure iterates through an IXMLDOMNodeList and
converts the nodes into a Clarion CSTRING. Location: xmlfuse.app, procedure
MSXMLExamples, routine XPa hExample t

XMLSelectNodes (*PWIXMLDOMNode xmlNode, string
sNodeName),*PWIXMLDOMNodeList – This procedure is a wrapper around the
PWIXMLDOMNode.selectNodes method call defined in msxml21.inc. It is passed a
parent DOM node (xmlNode) and a string containing the path to the node(s) to
return. It returns a list of nodes matching the criteria in sNodeName. Location:
xmlfuse.app, procedure MSXMLExamples, routine XPathExample

XMLSelectSingleNode (*PWIXMLDOMNode xmlNode, string
sNodeName),*PWIXMLDOMNode – This procedure is a wrapper around the
PWIXMLDOMNode.selectSingleNode method call defined in msxml21.inc. It is
passed a parent DOM node (xmlNode) and a string containing the path to the node(s)
to return. It returns a single node matching the criteria in sNodeName.

 26

X M L F U S E G U I D E

Example Application
The main example application which ships with xmlFUSE is xmlfuse.app. It contains
over 50 modules of example code demonstrating many different aspects of XML and
SOAP functionality. The documentation does not contain the source code to the
entire example due to its size – for questions about it you can visit our support forum.
Instead, we will focus on a few key source code examples and will provide an index of
features. Some of the source code to the xmlfuse.app is contained in the free demo
which can be downloaded from the ThinkData site using the following link:

http://www.thinkdata.com/aspwpadmin/stattrack/includes/dltrack.asp?Title=XMLFUSEDEMO&File=xfdemo.zip

Here are some of the features covered in the examples for xmlFUSE:

Procedure Functionality

MSXMLExamples

- Convert Microsoft Outlook Data to XML using

DOM (Document Object Model) via
ConvertOutlookToXML procedure routine

- Serialize/Deserialize Clarion GROUP data structure
to XML via ConvertClarionGROUPtoDOM and
ConvertDOMtoClarionGROUP procedure
routines

- Serialize/Deserialize Clarion QUEUE data structure
to XML via ConvertClarionQUEUEtoDOM and
ConvertDOMtoClarionQUEUE procedure
routines

- Serialize/Deserialize Clarion FILE to XML via
ConvertClarionFILEtoDOM and
ConvertDOMtoClarionFILE procedure routines

- Conversion of Microsoft dynamDOM project at
http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/xmlsdk/htm/dom_hdi_6ab8.asp to
Clarion via CreateXMLUsingDOM procedure
routine

- XSL transformation of an XML document via
TransformXMLUsingXSL procedure routine

- Parse XML document using SAX via
ParseUsingSAX procedure routine

- XPath navigation via XPathExample

MSXMLHTTPExamples

- Fetch web site data via GetSiteContents
- Search Google using HTTP via

GoogleHTTPSearch procedure routine
- Bill a credit card using Authorize.NET via

POSTToAuthorizeNET procedure routine
- POST an entry to ThinkData’s web based

Guestbook via POSTToThinkDataGuestbook
procedure routine

- Retrieve Yahoo stock quotes via
GetSingleStockQuote and RefreshStockQuotes
procedure routines

- Download an Internet image into a Clarion image
control via DownloadImageFromURL routine

- Download a file from the Internet using HTTP or
HTTPS into a file on disk via
DownloadURLToFile

 27

http://www.thinkdata.com/aspwpadmin/stattrack/includes/dltrack.asp?Title=XMLFUSEDEMO&File=xfdemo.zip
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/htm/dom_hdi_6ab8.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/htm/dom_hdi_6ab8.asp

X M L F U S E G U I D E

MSSOAPExamples

- Translate text into multiple languages including
English, French, Spanish, German, Italian,
Portuguese, and Russian using the BabelFish SOAP
web service from AltaVista via the
BabelFishSOAPExample procedure routine (See
http://babelfish.altavista.com for more information
on the service)

- Retrieve Currency Exchange Rates for dozens of
countries using XMethods SOAP web service via
CurrencyExchangeRate procedure routine (See
http://www.xmethods.com for more information on
the service)

- Conversion of Microsoft’s DocSample1 C++
example contained in the MS SOAP 3.0 Toolkit via
the DocSample2 procedure routine

- Check spelling using the Google Dictionary SOAP
web service via the
GoogleSOAPSpellingSuggestionExample
procedure routine. Search Google using the SOAP
search service via the GoogleSOAPSearchExample
procedure routine and place the results in a Clarion
QUEUE using the xmlFUSE helper functions (See
http://www.google.com/apis/ for more information
on the service)

- Search Amazon.com books using the Amazon SOAP
web service via the AmazonSOAPExample. The
results are placed in a Clarion QUEUE using the
xmlFUSE helper functions. This example also
demonstrates the use of SafeArray support in
Plugware COM to retrieve images from
Amazon.com and place them in the Clarion image
control. (See http://www.amazon.com/soap) for
more information on the service)

- Retrieve United States city, state, zip code, area code,
and time zone information using the AddressInfo
procedure routines . The results are placed in a
Clarion QUEUE using the xmlFUSE helper
functions. (See
http://www.webservicex.net/uszip.asmx) for more
information on the service)

- GeoMonster Web Services demonstrating United
Kingdom, Canadian, and United States Postal Code
Information as well as SMTP E-mail Mailbox
verification and IP Address Location Lookup.

RSSSupport

- Demonstrates the functionality of a basic RSS (Really
Simple Syndication) reader in native Clarion code.
The FetchRSSFeed routine retrieves images from
the RSS feed and can serve as a starting point for
building a full featured RSS aggregator. (See
http://backend.userland.com/rss for more
information regarding RSS)

The following listing is a subset of the code in the example application with comments
in bold to describe what the code is doing. You can view more of the source code by
opening the xmlfuse.app in Clarion 5.5 or Clarion 6 and taking a look at some of the
code yourself. The full version of the product contains the complete source code
whereas the demo ships with a subset of the source code. The Clarion source code
listing begins below:

 28

http://babelfish.altavista.com/
http://www.xmethods.com/
http://www.google.com/apis/
http://www.amazon.com/soap
http://www.webservicex.net/uszip.asmx
http://backend.userland.com/rss

X M L F U S E G U I D E

XML Examples

ConvertClarionQUEUEtoDOM routine
 ! We must CreateInstance on an PWIXMLDOMDocument2 before we can call
 ! any of the xmlFUSE helper functions

 hr = xmlDoc.CreateInstance()
 if hr ~= S_OK then exit.

 ! The XMLFUSE:MapByOrder and XMLFUSE:MapByName are constants declared

! We can call XMLConvertQUEUEToDOM to serialize the QUEUE into XML DOM

 ! globally as follows:

 ! itemize(0)
 ! XMLFUSE:MapByOrder equate
 ! XMLFUSE:MapByName equate
 ! end

 execute choice(?bQUEUEMap)
 xmlNode &= XMLConvertQUEUEToDOM(qStrings, xmlDoc, XMLFUSE:MapByOrder)
 xmlNode &= XMLConvertQUEUEToDOM(qStrings, xmlDoc, XMLFUSE:MapByName)
 end

 ! Return the contents of the serialized XML DOM as a Clarion CSTRING
 sz &= XMLGetXMLString(xmlNode)
 szQUEUEXml = sz
 FormatXMLSpacing(szQUEUEXml)
 dispose(sz)
 dispose(xmlNode)

 ! Release the PWIXMLDOMDocument2 object so we can reuse it later
 xmlDoc.Release()

 display

CreateXMLUsingDOM routine
 ! The following code constructs the following XML using DOM
 !
 !<?xml version="1.0"?>
 !<?xml-stylesheet type='text/xml' href='dom.xsl'?>
 !<!--sample xml file created using XML DOM object.-->
 !<root created="using dom">
 ! <node1>some character data</node1>
 ! <node2><![CDATA[<some mark-up text>]]></node2>
 ! <node3>
 ! <subNode1/>
 ! <subNode2/>
 ! <subNode3/>
 ! </node3>
 !</root>

 hr = xmlDoc.CreateInstance();if hr ~= S_OK then exit.

 !<?xml version="1.0"?>
 szParam1 = 'xml'
 szParam2 = 'version="1.0"'
 xmlPi &= XMLCreateProcessingInstruction(szParam1, szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlPi, xmlDoc)
 dispose(xmlNode)
 dispose(xmlPi)

 !<?xml-stylesheet type='text/xml' href='dom.xsl'?>
 szParam1 = 'xml-stylesheet'
 szParam2 = 'type=''text/xml'' href=''dom.xsl'''
 xmlPi &= XMLCreateProcessingInstruction(szParam1, szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlPi, xmlDoc)

 29

X M L F U S E G U I D E

 dispose(xmlNode)
 dispose(xmlPi)

 !<!--sample xml file created using XML DOM object.-->
 szParam1 = 'sample xml file created using XML DOM object'
 xmlComment &= XMLCreateComment(szParam1, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlComment, xmlDoc)
 dispose(xmlNode)
 dispose(xmlComment)

 ! Create the root element (i.e., the documentElement).
 szParam1 = 'root'
 xmlRoot &= XMLCreateElement(szParam1, xmlDoc)

 ! Create a "created" attribute for the root element and

!<root created="using dom">

 ! assign the "using dom" character data as the attribute value.
 szParam1 = 'created'
 xmlAttribute &= XMLCreateAttribute(szParam1, xmlDoc)

 szParam2 = 'using dom'
 BStrParam2.Init(szParam2)
 vtValue.vt = VT_BSTR
 vtValue.iVal = BStrParam2.GetStr()
 hr = xmlAttribute.put_value(vtValue)
 BstrParam2.Release()

 IDOMAttribute &= (xmlAttribute.GetIUnknown())
 hr = xmlRoot.setAttributeNode(IDOMAttribute, pvObject)

 ! Add the root element to the DOM instance.
 xmlNode &= XMLAppendChildNode(xmlRoot, xmlDoc)
 dispose(xmlNode)
 dispose(xmlAttribute)

 ! Create an element to hold text content.
 szParam1 = 'node1'
 xmlElement &= XMLCreateElement(szParam1, xmlDoc)

 hr = xmlDoc.get_documentElement(pvObject)
 if hr = S_OK and pvObject
 xmlDocElement &= new(PWIXMLDOMElement)
 hr = xmlDocElement.Attach(pvObject)
 if hr ~= S_OK then ShowXMLError(xmlDoc);return.

 ! pXMLDom->documentElement->appendChild(pXMLDom->createTextNode("\n\t"));

! for structured formatting:

 szParam2 = '<13><10>'
 xmlText &= XMLCreateTextNode(szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlText, xmlDocElement)
 dispose(xmlNode)
 dispose(xmlText)

 ! pe->text = "some character data";
 szParam2 = 'some character data'
 BStrParam2.Init(szParam2)
 hr = xmlElement.put_text(BStrParam2.GetStr())
 if hr ~= S_OK then ShowXMLError(xmlDoc);return.
 BStrParam2.Release()

 ! pXMLDom->documentElement->appendChild(pe);
 xmlNode &= XMLAppendChildNode(xmlElement, xmlDocElement)
 dispose(xmlNode)
 end
 dispose(xmlElement)

 30

X M L F U S E G U I D E

 ! Create an element to hold a CDATA section.
 szParam1 = 'node2'
 xmlElement &= XMLCreateElement(szParam1, xmlDoc)

 szParam2 = '<13><10>'
 xmlText &= XMLCreateTextNode(szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlText, xmlDocElement)
 dispose(xmlNode)
 dispose(xmlText)

 szParam2 = '<some mark-up text>'
 xmlCDATASection &= XMLCreateCDATASection(szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlCDATASection, xmlElement)
 dispose(xmlNode)
 dispose(xmlCDATASection)

 xmlNode &= XMLAppendChildNode(xmlElement, xmlDocElement)
 dispose(xmlNode)

 dispose(xmlElement)

 ! Create an element to hold three empty subelements.
 szParam1 = 'node3'
 xmlElement &= XMLCreateElement(szParam1, xmlDoc)

 ! for structured formatting
 szParam2 = '<13><10>'
 xmlText &= XMLCreateTextNode(szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlText, xmlDocElement)
 dispose(xmlNode)
 dispose(xmlText)

 xmlDocumentFragment &= XMLCreateDocumentFragment(xmlDoc)

! pdf->appendChild(pXMLDom->createTextNode("\n\t\t"));
 szParam2 = '<13><10>'
 xmlText &= XMLCreateTextNode(szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlText, xmlDocumentFragment)
 dispose(xmlNode)
 dispose(xmlText)

! pdf->appendChild(pXMLDom->createElement("subNode1"));
 szParam2 = 'subNode1'
 xmlSubNode &= XMLCreateElement(szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlSubNode, xmlDocumentFragment)
 dispose(xmlNode)
 dispose(xmlSubNode)

! pdf->appendChild(pXMLDom->createTextNode("\n\t\t"));
 szParam2 = '<13><10>'
 xmlText &= XMLCreateTextNode(szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlText, xmlDocumentFragment)
 dispose(xmlNode)
 dispose(xmlText)

! pdf->appendChild(pXMLDom->createElement("subNode2"));
 szParam2 = 'subNode2'
 xmlSubNode &= XMLCreateElement(szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlSubNode, xmlDocumentFragment)
 dispose(xmlNode)
 dispose(xmlSubNode)

 31

X M L F U S E G U I D E

! pdf->appendChild(pXMLDom->createTextNode("\n\t\t"));
 szParam2 = '<13><10>'
 xmlText &= XMLCreateTextNode(szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlText, xmlDocumentFragment)
 dispose(xmlNode)
 dispose(xmlText)

! pdf->appendChild(pXMLDom->createElement("subNode3"));
 szParam2 = 'subNode3'
 xmlSubNode &= XMLCreateElement(szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlSubNode, xmlDocumentFragment)
 dispose(xmlNode)
 dispose(xmlSubNode)

! pdf->appendChild(pXMLDom->createTextNode("\n\t"));
 szParam2 = '<13><10>'
 xmlText &= XMLCreateTextNode(szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlText, xmlDocumentFragment)
 dispose(xmlNode)
 dispose(xmlText)

! pe->appendChild(pdf);
 xmlNode &= XMLAppendChildNode(xmlDocumentFragment, xmlElement)
 dispose(xmlNode)

! pXMLDom->documentElement->appendChild(pe);
 xmlNode &= XMLAppendChildNode(xmlElement, xmlDocElement)
 dispose(xmlNode)

! pXMLDom->documentElement->appendChild(pXMLDom->createTextNode("\n"));
 szParam2 = '<13><10>'
 xmlText &= XMLCreateTextNode(szParam2, xmlDoc)
 xmlNode &= XMLAppendChildNode(xmlText, xmlDocElement)
 dispose(xmlNode)
 dispose(xmlText)

 ! Test of IXMLDOMNode.cloneNode
 ! If VARIANT_TRUE then all child nodes are cloned as well
 ! if VARIANT_FALSE then just this node
 hr = xmlElement.cloneNode(VARIANT_TRUE, pvObject)
 if hr = S_OK and pvObject
 xmlNode &= new(PWIXMLDOMNode)
 hr = xmlNode.Attach(pvObject);if hr ~= S_OK then
ShowXMLError(xmlDoc);return.
 xmlNode2 &= XMLAppendChildNode(xmlNode, xmlElement)
 dispose(xmlClone)
 end

 display

! Test of XMLRemoveChildNode on the cloned node we just added above
 xmlNode &= XMLRemoveChildNode(xmlNode2, xmlElement)
 dispose(xmlNode)
 dispose(xmlNode2)

! Test of XMLReplaceChildNode on the entire xmlElement node
 szParam1 = 'replacechildnodeonnode3'
 xmlNode2 &= XMLCreateElement(szParam1, xmlDoc)
 xmlNode &= XMLReplaceChildNode(xmlNode2, xmlElement, xmlDocElement)
 dispose(xmlNode)
 dispose(xmlNode2)

 dispose(xmlDocumentFragment)
 dispose(xmlElement)
 dispose(xmlDocElement)

 32

X M L F U S E G U I D E

 ! Display the generated XML
 sz &= XMLGetXMLString(xmlDoc)
 szXml = sz
 dispose(sz)

 dispose(xmlRoot)
 xmlDoc.Release()

 display

SOAP Examples

BabelFishSOAPExample routine
 setcursor(cursor:wait)

 ! Plugware COM automation This demonstrates the "high-level API" method of

! Prepare to create an instance of the MS SOAP 3.0 client using late binding

 ! making SOAP requests
 progid = 'MSSOAP.SoapClient30'
 hr = soapclient.CreateInstance(progid)
 ! If we have a problem, show the error and exit the routine
 if hr ~= S_OK then ShowCOMError(hr);exit.

 ! The WSDL (Web Services Description Language) file describes what services
 ! are available to our SOAP request. You can put the URL below into your web
 ! browser to see what a WSDL file looks like. It is just an XML formatted
 ! language used to describe the web service's capabilities.
 szWSDLFile = 'http://www.xmethods.net/sd/2001/BabelFishService.wsdl'
 szServiceName = 'BabelFishService'
 szPort = 'BabelFishPort'
 szWSMLFile = ''

 ! using the 5 parameter version of PWDispatch.Invoke so we pass vtMissing as

! The following call to PWDispatch.Invoke passes 3 parameters. This call is

 ! the last two parameters.
 szMember = 'mssoapinit'
 hr = soapclient.Invoke(szMember, DISPATCH_METHOD, 3, _vt(szWSDLFile), |
 _vt(szServiceName), _vt(szPort), _vt(vtMissing), |
 _vt(vtMissing), vtIDisp)
 if hr ~= S_OK then ShowCOMError(hr).

 get(BabelFishQ, choice(?Language:List))

 ! We wish to translate the text in szTextToTranslate and we are using the
 ! languageID selected in the drop list. After the call to
 ! PWDispatch.Invoke on the 'BabelFish' method we will check to see if a
 ! BSTR or binary string is returned. If it is, we use the _cstr helper
 ! function to convert it to a Clarion CSTING and put that into the
 ! szTranslatedText text box.
 szMember = 'BabelFish'
 hr = soapclient.Invoke(szMember, DISPATCH_METHOD, 2,
_vt(BabelFishQ.LanguageID), |
 _vt(szTextToTranslate), _vt(vtMissing),
_vt(vtMissing), |
 _vt(vtMissing), vtValue)
 if hr ~= S_OK then ShowCOMError(hr).

 if vtValue.vt = VT_BSTR
 sz &= _cstr(vtValue.iVal)
 szTranslatedText = sz
 dispose(sz)
 end

 33

X M L F U S E G U I D E

 ! We must release the soapclient object if we intend to reuse it
 soapclient.Release()

 ! Releasing VariantFactory is important when using late binding
 ! automation. VariantFactory caches up to 256 variants created when the
 ! _vt helper function is called
 VariantFactory.Release()

 setcursor()

 display

GoogleSOAPSpellingSuggestionExample routine
 setcursor(cursor:wait)

 ! Prepare to create an instance of the MS SOAP 3.0 client using late binding
 ! Plugware COM automation This demonstrates the "high-level API" method of
 ! making SOAP requests
 progid = 'MSSOAP.SoapClient30'
 hr = soapclient.CreateInstance(progid)
 if hr ~= S_OK then ShowCOMError(hr);exit.

 ! The WSDL (Web Services Description Language) file describes what services
 ! are available to our SOAP request. You can put the URL below into your web
 ! browser to see what a WSDL file looks like. It is just an XML formatted
 ! language used to describe the web service's capabilities.
 szWSDLFile = 'http://api.google.com/GoogleSearch.wsdl'
 szServiceName = 'GoogleSearchService'
 szPort = 'GoogleSearchPort'
 szWSMLFile = ''

 ! The following call to PWDispatch.Invoke passes 3 parameters. This call is
 ! using the 5 parameter version of PWDispatch.Invoke so we pass vtMissing as
 ! the last two parameters.
 szMember = 'mssoapinit'
 hr = soapclient.Invoke(szMember, DISPATCH_METHOD, 3, _vt(szWSDLFile), |
 _vt(szServiceName), _vt(szPort), _vt(vtMissing), |
 _vt(vtMissing), vtIDisp)
 if hr ~= S_OK then ShowCOMError(hr).

 ! using the 5 parameter version of PWDispatch.Invoke so we pass vtMissing as

! The following call to PWDispatch.Invoke passes 2 parameters. This call is

 ! the last three parameters.

 szMember = 'doSpellingSuggestion'
 hr = soapclient.Invoke(szMember, DISPATCH_METHOD, 2,
_vt(szGoogleDeveloperToken), |
 _vt(szGoogleSpellingSuggestion), _vt(vtMissing), |
 _vt(vtMissing), _vt(vtMissing), vtValue)
 if hr ~= S_OK then ShowCOMError(hr).

 ! We wish to check the spelling of the text in szGoogleSpellingSuggestion
 ! After the call to PWDispatch.Invoke on the 'BabelFish' method we will
 ! check to see if a BSTR or binary string is returned. If it is, we use
 ! the _cstr helper function to convert it to a Clarion CSTING and put that
 ! into the szGoogleSpellingSuggestion

 if vtValue.vt = VT_BSTR
 sz &= _cstr(vtValue.iVal)
 if sz
 case message('Google suggests replacing "'&szGoogleSpellingSuggestion&'"
with "' |

 34

X M L F U S E G U I D E

 &sz&'"|Do you wish to use Google''s suggestion?', |
 'Google SOAP Spell Checker', ICON:Question,
BUTTON:Yes+BUTTON:No, |
 BUTTON:Yes)
 of button:yes
 szGoogleSpellingSuggestion = sz
 end
 else
 message('No Suggestions','Google SOAP')
 end
 dispose(sz)
 end

 ! We must release the soapclient object if we intend to reuse it
 soapclient.Release()

 ! automation. VariantFactory caches up to 256 variants created when the

! Releasing VariantFactory is important when using late binding

 ! _vt helper function is called
 VariantFactory.Release()

 setcursor()

 display

 35

X M L F U S E G U I D E

Links
We have provided a number of Internet links which we found helpful in the
development of the xmlFUSE product and in its daily use. If you find helpful
resources in your development process, or have questions for us related to xmlFUSE,
we encourage you to submit them to our support forum listed below.

ThinkData Support Forum

http://www.thinkdata.com/forum/

XML Links

Microsoft XML Development Center
http://msdn.microsoft.com/xml

Top XML Sample Code and Tutorial
http://www.topxml.com/xml/learnxml.asp

Aaron Skonnard’s XML Resources
http://staff.develop.com/aarons/xmllinks.htm

PerfectXML Sample Code, Articles, and Tutorials
http://www.perfectxml.com/

W3Schools XML Tutorial
http://www.w3schools.com/xml/

 36

http://www.thinkdata.com/forum/
http://msdn.microsoft.com/xml
http://www.topxml.com/xml/learnxml.asp
http://staff.develop.com/aarons/xmllinks.htm
http://www.perfectxml.com/
http://www.w3schools.com/xml/

X M L F U S E G U I D E

SOAP Links

Microsoft SOAP Development Center
http://msdn.microsoft.com/soap

Download Amazon.com SOAP Toolkit
http://associates.amazon.com/exec/panama/associates/join/developer/kit.html

Download Google.com SOAP Toolkit
http://www.google.com/apis/

XMethods.com Web Services
http://www.xmethods.com/

W3Schools SOAP Tutorial
http://www.w3schools.com/soap/

SOAPClient.com Resources and services for SOAP
http://soapclient.com

RSS Links

RSS 2.0 specification
http://backend.userland.com/rss

Syndic8 RSS Feed List
http://www.syndic8.com/

InfoWorld RSS Feeds
http://www.infoworld.com/rss/rss_info.html

NewsMonster
http://newsmonster.org/

 37

http://msdn.microsoft.com/soap
http://associates.amazon.com/exec/panama/associates/join/developer/kit.html
http://www.google.com/apis/
http://www.xmethods.com/
http://www.w3schools.com/soap/
http://soapclient.com/
http://backend.userland.com/rss
http://www.syndic8.com/
http://www.infoworld.com/rss/rss_info.html
http://newsmonster.org/

X M L F U S E G U I D E

Summary
The examples we have shown only scratch the surface of the potential of the
xmlFUSE product. There are literally hundreds of SOAP web services which can be
consumed by your Clarion application using xmlFUSE to provide many forms of
content to your users without a major investment in development. In addition,
xmlFUSE is the only product of its kind for Clarion 5.5 and Clarion 6 providing native
early and late binding to the MS XML 4.0 Toolkit with a stable and efficient COM
layer from Plugware Solutions. Whether you need to import XML from another
vendor’s database, export Clarion data to XML, or develop something new and novel
using an XML layer, xmlFUSE is the only solution you need.

We hope you enjoy xmlFUSE and invite you to join ThinkData’s support forum to ask
questions and get tips on using it to its fullest potential. Thanks for your interest in
xmlFUSE and keep your eyes open for other COM automation products from our
FUSE product line.

 38

http://www.thinkdata.com/forum

 39

	Prerequisites
	Installation
	Plugware COM Overview
	String Classes
	Helper Classes
	Early Binding Automation
	Late Binding Automation
	Multi-DLL Considerations
	xmlFUSE Overview
	List of Interfaces
	xmlFUSE Procedures
	Example Application

